Участие микроорганизмов в круговороте веществ
Страница 1

Биология » Характеристика общих свойств микроорганизмов » Участие микроорганизмов в круговороте веществ

В соответствии со своей ролью и функцией в балансе природы орга­низмы разделяются на три группы. Зеленые растения синтезируют орга­нические вещества, используя энергию солнца и углекислоту, поэтому их называют продуцентами. Животные являются потребителями (коису-ментами); они расходуют значительную часть первичной биомассы для построения своего тела. Тела животных и растений в конце концов под­вергаются разложению, при котором органические вещества превра­щаются в минеральные, неорганические соединения. Этот процесс, на­зываемый минерализацией, осуществляют в первую очередь грибы и бактерии; в балансе природы они служат деструкторами. Таким обра­зом, биоэлементы участвуют в циклических процессах. Здесь уместно коротко остановиться на биогеохимических круговоротах углерода, азо­та, фосфора и серы.

Круговорот углерода. В круговороте углерода микроорганизмы вы­полняют функцию, очень важную для поддержания жизни на Земле. Они обеспечивают минерализацию углерода, переведенного зелеными растениями в органические соединения, и тем самым поддерживают весьма неустойчивое равновесие (рис. 1.1). Атмосферный воздух содер­жит чуть больше 0,03% двуокиси углерода (12 мкМ/л). Фотосинтетиче екая же продуктивность зеленых растений так велика, что запас С02 в атмосфере был бы исчерпан примерно за 20 лет. Это относительно короткий срок в человеческих масштабах времени; ведь считается, что запасов энергии и угля на Земле хватит на срок от 1000 до 3000 лет. Да­же если учесть запасы С02 в океанах, то этого газа хватило бы лишь примерно на 2000 лет.

Зеленым растениям пришлось бы вскоре прекратить фиксацию С02, если бы низшие животные и микроорганизмы не обеспечивали возвра­щение этого газа в атмосферу в результате непрерывной минерализации органического материала. В общем балансе веществ на земном шаре почвенным бактериям и грибам принадлежит не меньшая роль, чем фо-тосинтезирующим зеленым растениям. Взаимозависимость всех живых существ на Земле находит наиболее яркое выражение в круговороте углерода.

Рис. 1.1. Круговорот углерода в биосфере.

Круговорот азота (рис. 1.2). Центральное место в круговороте азота занимает аммоний. Он является продуктом разложения белков и ами­нокислот, попадающих вместе с остатками животного и растительного происхождения в почву. В хорошо аэрируемых почвах аммоний подвер­гается нитрификации; бактерии родов Nitrosomonas и Nitrobacter окис ляют его до нитрита и нитрата. В качестве источника азота растения могут использовать и ассимилировать как аммоний, так и нитрат. В от­сутствие кислорода из нитрата рбразуется молекулярный азот (денитри-фикация). Бактерии, участвующие в этом процессе, используют при этом нитрат в качестве окислителя (акцептора водорода), т.е. «дышат» с помощью NO^ вместо 02; в этом случае говорят о «нитратном дыха­нии». Денитрификация ведет к потере азота почвой. Наряду с этим бак­терии способны и к фиксации молекулярного азота. Связывающие азот бактерии живут или свободно в почве (вне симбиоза), или в симбиозе с высшими растениями (симбиотические азотфиксаторы). Основную роль в круговороте азота наряду с животными и растениями играют бактерии.

Рис. 1.2. Круговорот азота.

Круговорот фосфора. В биосфере фосфор представлен почти исклю­чительно в виде фосфатов. В живых организмах фосфорная кислота су­ществует в форме эфиров. После отмирания клеток эти эфиры быстро разлагаются, что ведет к освобождению ионов фосфорной кислоты. До­ступной для растений формой фосфора в почве служат свободные ионы ортофосфорной кислоты (Н3Р04). Их концентрация часто очень низка; рост растений, как правило, лимитируется не общим недостатком фос­фата, а образованием малорастворимых его соединений, таких как апа­тит и комплексы с тяжелыми металлами. Запасы фосфатов в месторож­дениях, пригодных для разработки, велики, и в обозримом будущем производство сельскохозяйственной продукции не будет ограничиваться недостатком фосфора; однако фосфат должен быть переведен в раство римую форму. Во многих местах фосфат из удобрений попадает в про­точные водоемы и озера. Так как концентрация ионов железа, кальция и алюминия в водоемах невысока, фосфат остается в растворенной фор­ме, что приводит к эвтрофизации водоемов, особенно благоприятной для развития азотфиксирующих цианобактерий. В почвах же из-за обра­зования нерастворимых солей фосфаты чаще всего быстро становятся недоступными для усвоения.

Страницы: 1 2


Также смотрите:

Предыстория антропного принципа
Антропный принцип вовсе не изобретение второй половины ушедшего XX столетия, как может показаться при первом рассмотрении, он так же стар, как вся известная нам западноевропейская цивилизация. Достаточно вспомнить древнегреческих мудрецов с их изречениями: «Познай сам ...

Саморегуляция системы
Как и большинство систем трансмембранной передачи сигналов, инозитолфосфатная система имеет не только механизм усиления, но и механизм подавления сигнала. Присутствующие в цитозоле инозитол-1,4,5-трифосфат ((ИФ3) и диацилглицерол (ДАГ) в мембране могут в результате се ...

Экспериментальная часть. Культурально-морфологическая характеристика микроорганизмов
В работе использовалось 13 культур микроорганизмов. Культуральные и морфологические признаки исследуемых микроорганизмов представлены в таблице 1. Таблица 1. Культурально-морфологичесие признаки микроорганизмов № штамма Признаки Окраска по Граму культу ...