Основные концепции физических пространства и времени:Страница 3
Спустя почти 40 лет после работ Лобачевского, в 1867 г. была опубликована работа Б. Римана "О гипотезах, лежащих в основании геометрии". Опираясь на идею о возможности геометрии, отличной от евклидовой, Риман подошёл к этому вопросу с несколько иных позиций, чем Лобачевский. С точки зрения Римана, вопрос о том, является ли геометрия нашего физического пространства евклидовой, что соответствует его нулевой кривизне, или эта кривизна не равна нулю, должен решить эксперимент. При этом он допускает, что свойства пространства должны зависеть от материальных тел и процессов, которые в нём происходят.
Кроме того, Риман высказал новое понимание бесконечности пространства. По его мнению, пространство нужно признать неограниченным; однако если оно может иметь положительную постоянную кривизну, то оно уже не бесконечно, подобно тому, как поверхность сферы, хотя, и не ограничена, тем не менее, её размеры не являются бесконечными. Так зарождалось представление о разграничении бесконечности и безграничности пространства (и времени).
Идеи неевклидовых геометрий поначалу имели весьма мало сторонников, ибо противоречили "здравому смыслу" и устоявшимся в течении многих веков воззрениям. Перелом наступил лишь во второй половине XIX в. Окончательные сомнения в логической правильности неевклидовой геометрии Лобачевского были развеяны в работах итальянского математика Э. Бельтрами, который, развивая идеи К. Гаусса в области дифференциальной геометрии для решения задач картографии, показал, что на поверхностях постоянной отрицательной кривизны (псевдосферы) осуществляется именно неевклидова геометрия. Интерес к работам Лобачевского и Римана вновь ожил и вызвал многочисленные исследования в области неевклидовых геометрий и оснований геометрии.
Развитие теории неевклидовых пространств привело в свою очередь к задаче построения механики в таких пространствах: не противоречат ли неевклидовы геометрии принципам механики? Если механику невозможно построить в неевклидовом пространстве, то значит реальное неевклидово пространство невозможно. Однако исследования показали, что механика может быть построена и в неевклидовом пространстве.
И те не менее появление неевклидовых геометрий, а затем "неевклидовой механики" на первых порах не оказало влияния на физику. В классической физике пространство оставалось евклидовым, и большинство физиков не видели никакой необходимости рассматривать физические явления в неевклидовом пространстве.
Также смотрите:
Размножение
Почти все одноклеточные водоросли способны размножаться простым делением. Клетка делится надвое, обе дочерние клетки - тоже, и этот процесс в принципе может идти до бесконечности. Поскольку клетка погибает только в результате "несчастного случая", можно гово ...
Изопикническое центрифугирование
Изопикническое центрифугирование проводят как в градиенте плотности, так и обычным путем. Если центрифугирование проводится не в градиенте плотности, препарат сначала центрифугируют так, чтобы осели частицы, молекулярный вес которых больше, чем у исследуемых частиц. Э ...
Генетическая транформация соматических клеток млекопитающих
Культуры трансформированных клеток млекопитающих используют для получения различных веществ. Хотя культуры клеток животных, особенно при массовом выращивании, гораздо менее экономичны, чем бактериальные дрожжевые культуры, они обладают существенным преимуществом - спо ...