Основные методы научного естествознания
Страница 7

Важнейшим средством построения и исследования идеализированного теоретического объекта является формализация. Формализация представляет собой отображение объекта или явления в знаковой форме какого-либо искусственного языка (математики, химии и т.д.) и обеспечение возможности исследования реальных объектов и их свойств через исследование соответствующих знаков.

Введение символики обеспечивает полноту обозрения определенной области проблем, краткость и четкость фиксации знание позволяет избежать многозначности терминов.

Создание алгоритмических формализованных описаний имеет не только собственно познавательную ценность, но является условием для использования на теоретическом уровне научного познания математического моделирования. Математическая модель есть знаковая структура, имеющая дело с абстрактными объектами - математическими величинами, понятиями, отношениями, которые допускают различные интерпретации. Одна и та же модель может применяться в различных науках. Значение математической модели при разработке теории определяется тем, что она, отображая определенные свойства и отношения оригинала, замещает его в определенном отношении и дает новую, более глубокую и полную информацию об оригинале. Математическая модель, как правило, имеет вид уравнения или системы уравнений различного типа вместе с необходимыми для ее решения начальными и граничными условиями, значениями коэффициентов уравнений и другими параметрами. Построение идеального объекта и последующее его исследование завершают переход от эмпирического уровня к теоретическому.

Теоретическое исследование объекта ориентировано на использование аксиоматического, гипотетико-дедуктивного, исторического методов и метода научного доказательства.

Аксиоматический метод представляет собой способ построения теории, при котором в ее основу кладутся некоторые ее положения - аксиомы или постулаты - из которых все остальные положения теории выводятся путем рассуждений, называемых доказательствами.

Правила, по которым должны проводиться эти рассуждения, рассматриваются в логике - в учении о дедукции. Все понятия, с которыми имеют дело в доказательствах, кроме небольшого числа первоначальных понятий, вводятся на основе определений, разъясняющих их смысл через ранее введенные или известные понятия.

В аксиоматическом методе некоторые утверждения (аксиомы) принимаются без доказательств и затем используются для получения остальных знаний по определенным логическим правилам. Общеизвестной, например, является аксиома о параллельных линиях (не пересекаются), которая принята в геометрии без доказательства.

Аксиоматические системы построены для всех основных разделов современной математики и логики. Если аксиоматический метод применяется к эмпирическому - естественнонаучному и общественно-научному знанию, то в качестве исходных положений используются гипотезы, то есть утверждения, относительно которых в ходе развития теории может быть доказана их истинность или ложность.

При применении к эмпирическому знанию аксиоматический метод выступает как гипотетико-дедуктивный метод. Данный метод находит широкое применение в биологии, психологии, лингвистике.

Сущность гипотетико-дедуктивного метода развертывания и обоснования теории состоит в следующем. Объяснение причин и закономерностей эмпирически исследуемых явлений высказывается первоначально в вероятностной, предположительной форме, то есть в виде одной или нескольких конкурирующих гипотез. Условия проверяемости гипотезы предполагают ее дедуктивное развертывание: из положений-посылок гипотезы по правилам дедуктивного вывода получают следствия, принципиально проверяемые в эксперименте. Необходимость таких процедур объясняется тем, что высказываются суждения о сущностных отношениях, непосредственно недоступных наблюдению, требующих догадки, воображения.

Гипотетический метод познания предполагает разработку научной гипотезы на основе изучения физической, химической и т.п. сущности исследуемого явления с помощью описанных выше способов познания и затем формулирование гипотезы, составление расчетной схемы алгоритма (модели), ее изучение, анализ, разработку теоретических положений,

Как в социально-экономических и гуманитарных, так и в естественных и технических науках часто используют исторический метод познания. Этот метод предполагает исследование возникновения, формирования и развития объектов в хронологической последовательности, в результате чего исследователь получает дополнительные знания об изучаемом объекте (явлении) в процессе его развития.

Исторический метод требует мысленного воспроизведения конкретного исторического процесса развития. Его специфика обусловливается особенностями самого исторического процесса: последовательностью событий во времени и проявлением исторической необходимости через множество случайных событий.

Страницы: 2 3 4 5 6 7 8


Также смотрите:

Исследования кровообращения до Гарвея
Можно считать общепризнанным, что учение о кровообращении – продукт европейского естествознания Нового времени и что созданием этой стройной системы физиологических представлений мы обязаны У.Гарвею. Открытие Гарвеем кровообращения (1628) понимается большинством истор ...

Стрелы излучения и вещества
Ясно, что эти стрелы должны идти параллельно основной стреле. Фактически излучение и вещество – это два вида материи, той самой «плоти Вселенной». Иногда к излучению относят и другие физические поля, но мы ограничимся электромагнитной сущностью излучения. Вещество в о ...

Влияние внешних факторов на плотность популяции
На большой части ареала бывают случаи массовой гибели косуль от истощения в суровые и многоснежные зимы с продолжительным настом. Косули плохо переносят высокий снеговой покров: европейские косули с трудом передвигаются по снегу высотой 20-30 см, а сибирские выше 40-6 ...